Effects of CO2 and nutrient availability on mineral weathering in controlled tree growth experiments

نویسندگان

  • Erika L. Williams
  • Lynn M. Walter
  • Timothy C. W. Ku
  • George W. Kling
  • Donald R. Zak
چکیده

[1] We sought to determine the effect of elevated atmospheric CO2 on mineral weathering reactions in midlatitude carbonate-bearing forest soils of differing nutrient availability. Increased plant growth and soil respiration under elevated atmospheric CO2 suggest increased rates of carbon cycling, which may affect mineral weathering. A randomized complete block experiment was conducted, where aspen and maple saplings were grown in open top chambers under two levels of atmospheric CO2 and soil N. Soil solution chemistry and soil gas PCO2 profiles beneath aspen were collected from planting (1997) to harvest (1999). Carbonate mineral weathering products (Ca, Mg, HCO3 ) dominated solutions, which were saturated with respect to calcite. Soil PCO2 values at 25 cm depth were 41% higher in high N soils, but CO2 treatment was not significant. An ANOVA model tested treatment effects on spring 1998 solution chemistry. CO2 treatment had a significant effect on DIC, which was 12% higher in elevated than ambient CO2 chambers. Little effect of CO2 treatment was observed in low N soils. In high N soils, solutions had higher concentrations of carbonate weathering products (DIC, 15%; HCO3 , 27%; Ca, 3%, not significant; Mg, 5%, not significant). Soil N availability had a significant, positive, effect on mean concentrations of Ca, Mg, K, Na, NO3 , SO4 2 , and DOC. The soil N treatment difference in solutes may result from differences in PCO2 and, additionally, NO3 from organic matter decomposition. Our results suggest that increased carbonate weathering may occur under increased atmospheric CO2 and in fertile soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and dry-matter partitioning of young Populus trichocarpa in response to carbon dioxide concentration and mineral nutrient availability.

Young individuals of a single black cottonwood (Populus trichocarpa Torr. & Gray) clone were raised for three growing seasons in whole-tree chambers and exposed to either ambient or elevated atmospheric carbon dioxide concentration ([CO2]), with either a high or a low mineral nutrient supply, in a factorial experimental design. Nutrient availability had a larger effect on growth and dry matter ...

متن کامل

Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.

In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dep...

متن کامل

Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance

[1] Mineral weathering and chemical denudation of terrestrial environments are understood by both geochemists and ecologists to be affected by rooted plant growth. We used unique 20-year ‘‘sandbox’’ experiments to test the predictions of both disciplines regarding the influence of tree growth and harvest on chemical weathering and denudation of Ca, Mg and K. Results showed 3 temporal phases: 1)...

متن کامل

Effects of the Timing of Foliar Application and Concentrations of Growth Regulators on the Mineral Content of Pistachio Leaves

Pistachio is one of the economically important horticultural crops in Iran. The main pistachio-producing areas in Iran are located at the edge of the desert and are affected by soil and water salinity. Water and nutrient uptake by the root decreases under saline conditions. In this study, the effects of foliar growth regulators applied at different times on the nutrient uptake and leaf nutrient...

متن کامل

Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes

Field studies indicate an intensification of mineral weathering with advancement from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal (EM) fungal partners of gymnosperm and angiosperm trees. We test the hypothesis that this intensification is driven by increasing photosynthate carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer experiments with representative tre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003